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NASA, in partnership with the Federal Aviation Administration and commercial airlines, deployed the Integrated 

Arrival, Departure, and Surface (IADS) traffic management system at Charlotte Douglas International Airport (CLT) 

in 2017 for field evaluation.  The system features new capabilities of data exchange and integration, collaborative 

surface metering and scheduling, which has demonstrated operational benefits of reducing delay time and fuel 

consumption.  General Aviation flights, however, are not currently included in the surface metering programs because 

of their different operational procedures and lack of reliable predictability in departure time.  Thus, their impact on the 

system performance is not well understood.  This paper presents a study of the impact of General Aviation traffic at 

CLT using fast-time simulations.  

I. Introduction 

In the United States there are more than 200,000 General Aviation (GA) aircraft in active use (including Part 91 and Part 135 

operations) that are estimated to log more than 20 million flight hours annually [1]. They are used for a variety of purposes including 

personal, business, and instruction. The number and proportion of GA operations varies by airport. At Charlotte Douglas International 

Airport (CLT), for instance, an average of 30 departure and 30 arrival flights per day account for about 4% of all airport operations. 

The numbers are based on a three-month operation data set from July to December in 2019.  As a comparison, the daily numbers at Dallas Love 

Field Airport (DAL) are over 60 each, and accounts for 20% of airport operations. Whereas the overall proportion of GA operations at 

CLT is small, the potential exists for some of these GA flights to impact surface operations. For example, they may compete with 

other air traffic, including commercial and cargo flights, for airport resources like runways. GA flights have less predictable departure 

schedules than commercial operations and, at CLT, do not have communication with the ramp tower before taxi, presenting a unique 

challenge for trajectory-based surface operations.  

A. Integrated Arrival, Departure, and Surface (IADS) Traffic Management System 

In September of 2017, NASA, in close collaboration with the Federal Aviation Administration (FAA) and industry, deployed the 

Integrated Arrival, Departure, and Surface (IADS) traffic management system at CLT as part of Airspace Technology Demonstration 

2 (ATD-2) project for a three-year field evaluation. The IADS system has demonstrated operational benefits through its capabilities of 

data exchange and integration, collaborative surface metering, departure scheduling for overhead stream insertion, and real-time 

metrics reporting [2].  The objective of the IADS system is to balance demand and capacity to achieve more efficient traffic movement 

on the surface and overhead stream insertion.  
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Surface metering is used when the predicted demand exceeds the airport capacity during departure banks.  Holding flights at the gate 

transfers excess taxi time from the departure runway queue back to the gate, prior to engine start.  As of March 31, 2020, it is 

estimated a total of 3,832 hours of engine run time reduction that resulted in 5,075,981 pounds of fuel savings and 15,634,022 pounds 

of CO2 emission reduction [3].   

Surface scheduling and metering is enabled by the availability and quality of flight readiness time. Major airlines participating in the 

ATD-2 field evaluation provide an Earliest Off-Block Time (EOBT) for each departure flight. The EOBT represents the best estimate 

of a flight’s earliest pushback time. A good quality EOBT helps the scheduler achieve accurate demand prediction at each runway and 

hence, achieve reliable scheduling to keep the surface less congested while maintaining overall airport throughput. Along with other 

data inputs, the surface scheduler uses the EOBTs to predict takeoff times of departure flights and calculate recommended gate holds. 

Gate hold advisories are communicated to Ramp Control through the ATD-2 Ramp Traffic Console (RTC) interface. 

Airlines are motivated to improve the accuracy of EOBT data for the benefit of reduced excess taxi time and fuel savings achieved 

through surface metering. A preliminary study of EOBT quality impact on surface metering [4][5] shows that the EOBT accuracy has 

a direct impact on the length of the departure gate hold time assigned by ATD-2’s surface scheduler. 

To date, GA operations have not been included in surface metering at CLT. One reason is that, unlike commercial flights at CLT’s 

main ramp, pilots departing from the GA ramp area do not contact the Ramp Tower prior to taxi. At the main ramp, the Ramp 

Controller communicates gate hold advisories for surface metering. In contrast, GA flights’ first communication is with the Ground 

Controller at the FAA’s Airport Traffic Control Tower (ATCT).  Other challenges in GA operations include less-predictable departure 

times and the ability to communicate up-to-date readiness and intent information to the ATD-2 scheduler.  Excluding GA flights 

before they enter the Airport Movement Area (AMA) from surface metering and scheduling may have a potential impact on the 

efficiency of airport operations that has not been investigated. 

B. Mobile App Technology Enables Two-Way Communication with GA Operations 

A mechanism is needed to enable two-way communication between GA operations and the ATD-2 scheduler prior to their entry into 

the AMA. In response to that need, The MITRE Corporation has developed a prototype Mobile Application (App) to enable two-way 

information sharing between GA pilots and NASA’s IADS traffic management system [6] [7]. 

MITRE has conducted a field test of their prototype Mobile App technology at CLT with a small group of Corporate Flight Operators. 

Using a mobile device, pilots submit a ready time to the ATD-2 scheduler. This ready time, referred to as a “Ready-to-Taxi Time”, or 

RTT, represents the pilot’s best prediction of when they will arrive at the edge of the GA ramp area and be ready to contact Ground 

Control for their taxi clearance to enter the AMA. The RTT submitted by GA pilots is analogous to the EOBT submitted by airlines 

for departure flights at the main ramp. It provides ATC and the ATD-2 scheduler with more accurate and up-to-date departure 

readiness information.  In return, the GA pilot receives flight-specific schedule information, generated by the ATD-2 scheduler, such 

as assigned runway and expected takeoff time, and information about traffic management restrictions in place. Fig.  1 shows an 

example timeline of how a GA pilot may incorporate using the Mobile App to submit readiness information into their pre-departure 

procedures.   

 
Fig.  1 Example timeline showing how a Corporate GA pilot may incorporate the Mobile App into their pre-departure procedures. 

MITRE’s field demonstration has shown that Mobile App technology can enable two-way communication flow between GA operators 

and surface schedulers. However, the communication procedures and requirements related to surface metering for GA flights have not 

yet been explored. Although not investigated in this field test, Mobile App technology has the potential to support the inclusion of GA 

flights in surface metering. For example, Mobile App technology might be used to provide metering hold advisories to GA pilots.  

Although this research has included primarily business aviation (BA) flights, other GA aircraft, cargo, and military flights have the 

same communication limitation and similar impacts on airport performance.  They are included in the GA flights in this study. 

C. Research Objective 

Because of the GA flights’ unique operational challenges, their impact on surface operations at CLT, particularly during surface 

metering, has not been fully understood. Research questions include: 1) whether GA flights have an unintended advantage over 

commercial airline flights which adhere to metering advisories at the gates? and 2) within a traffic bank, what GA traffic concentration 



affects the airline flights the most?  Since the grand scheme of surface metering depends on quality of predictability for performance, 

questions exist around whether including GA flights with RTT data in surface metering might improve overall runway throughput, 

taxi times, delays, and fuel consumption.  

Note that the concept of surface metering “gate holds”, as applied to commercial flights at a parking gate, is that the aircraft is held at 

the gate, prior to push back. How it would be applied in GA operations has yet to be explored. It may mean that a GA flight holds 

somewhere in the GA ramp area, and possibly, delays engine start. However, for the purpose of this simulation, the term “gate hold” is 

applied generally to GA operations to mean they were held prior to entering the AMA. Specific procedures for applying “gate holds” 

in GA operations are beyond the scope of this simulation. 

This paper investigates the impact of GA flights on the efficiency of airport operations using IADS’s surface metering programs at 

CLT. The study uses fast-time simulations and explores two sets of variables. The first is the GA traffic demand that is quantified by 

the number of GA flights in the overall flight traffic at the airport and their flight times during traffic peak hours. The other variable is 

the GA flight readiness information, RTT, including provision and accuracy.   

The paper is organized as follows: Section II describes the simulation environment including system setup, traffic scenarios, metrics 

and measurements, and the RTT model development.  Section III presents the simulation results using the given scenarios and RTT 

model.  The paper concludes with a summary in Section IV. 

II. Simulation environment description 

A. Airport 

The simulations used the CLT airport in a south simultaneous traffic flow configuration.  Fig. 2 shows the airport layout at CLT.  

While Runway 18R is for arrival only, Runways 18C and 18L are dual-use runways for both departures and arrivals in this runway 

configuration. A Fixed Base Operator (FBO), where some GA/BA passengers meet their pilot, is located at the General Aviation 

Ramp on the east side of the airport, shown in the green box in Fig. 2. 

     

Fig.  2 CLT airport diagram 

 

Fig.  3 Fast-time simulation setup

B. Simulation setup 

The simulations in this paper use the same configuration that was built and validated in the previous study about the impact of EOBT 

uncertainty [4] with the addition of a newly developed RTT model for GA flights, as shown in Fig. 3.  NASA’s Surface Operations 
Simulator and Scheduler (SOSS) [8] was used for these simulations.  SOSS connects to the ATD-2 Tactical Surface Scheduler through 

the Surface Modeler.  The traffic scenarios are the inputs to the simulator and define the GA traffic level and demand density, as well 

as scheduled airline flights.  The EOBT Model provides the EOBT updates for the airline aircraft in the main terminals.  The RTT 

Model provides the estimated readiness times and accuracy for GA flights. The Surface Modeler used for fast-time simulations is 

adapted from ATD-2’s Surface Model used in real-time field demonstration, which is used for data exchanges and integration.  One of 

the core concepts is to group aircraft by their priorities and predictability of flight readiness in scheduling [9].  When the predicted 

traffic demand exceeds the runway capacity and the predicted excess taxi time is above a preset threshold, surface metering is 

triggered. The Tactical Surface Scheduler schedules flights from high-priority group to low-priority group.  In the simulations, both 

airline departures at gates that provide EOBT updates and GA aircraft providing an RTT estimate at stand are placed in the same high-

priority group.  The GA aircraft with no RTT estimate are placed in the low-priority group for scheduling priority and are exempt 

from surface metering, and, therefore, start taxiing from the parking stand whenever they are ready, emulating the current GA ramp 

operation without Mobile App communication.   

C. Simulation configurations 

In this study, four simulation configuration groups are considered.  They are designed to support two sets of simulation variables as 

described in the research objectives.  The baseline traffic scenario for all groups is derived from actual operation data from Bank 2 

traffic at CLT on February 14, 2018.  There is a total of nine traffic banks daily at CLT.  Bank 2 is one of the busiest banks in the 

morning traffic. The typical traffic pattern in Bank 2 is that the departure demand peaks before the arrival demand starts to build up.  



In this baseline scenario, there are 85 airline departures and 83 airline arrivals, respectively.  Of the 85 departures, 43 take off from 

Runway 18C and 42 from 18L, respectively.  Of the 83 arrivals, 5, 30, and 48 land on Runways 18C, 18L and 18R, respectively.   

1. Simulation Group 1: GA flight request distribution 

The purpose of the first simulation group was to investigate the impact of GA flights’ requested departure time distribution.  Four 

different departure time distribution patterns were examined, with each scenario having ten GA flights: 1) uniformly distributed over 

the bank, 2) concentrated in the beginning of the bank, 3) concentrated in the middle of the bank, and 4) concentrated in the end of the 

bank.  GS flights in this simulation group did not provide RTTs and so were exempt for surface metering. It was expected that GA 

traffic demand at the peak time, i.e., case 3, would have the largest impact on the airport performance in a surface metering situation. 

2. Simulation Group 2: Number of GA flights 

The second simulation group increases the number of GA flights uniformly distributed in the bank to examine any adverse impact to 

airline flights, such as increase of taxi times or gate hold times (when metering is on). As with Group 1, GA flights did not provide 

RTTs. 

3. Simulation Group 3: RTT percentage 

In the third simulation group, a certain percentage of GA flights were assumed to provide RTTs with similar accuracy as observed in 

MITRE data described in section E. The percentage of GA flights providing RTTs was varied for ten uniformly distributed GA flights.  

Those GA flights submitting RTTs are assigned the same scheduling priority as the airline flights that have EOBTs at main terminals 

and are expected to comply with any assigned metering hold at the parking stands.  The performance (e.g., taxi time) of the GA flights 

will be examined together with airline flights. 

4. Simulation Group 4: RTT accuracy 

In the last simulation group, all ten uniformly distributed GA flights were assumed to provide RTTs with varying accuracy. The RTT 

model generates the various accuracy levels used in the simulations.  The expectation was that as the RTT accuracy improves, taxi 

time reduction will occur for both airline and GA flights during surface metering.  

D. Performance metrics 

To analyze the impact on the efficiency of airport operations, a set of performance metrics were considered.  They included gate hold 

time of metered GA and airline flights, time series of gate hold time, taxi out time of GA and airline flights, time series of taxi out 

time, and runway throughput. 

E. RTT model 

In this section, we describe how the RTT accuracy model is developed using a data driven approach. For this work, we have used the 

data collected by MITRE for GA flights that departed from CLT between October 20th, 2017 and September 17th, 2019. The 

proposed RTT model is a combination of two probabilistic quantities: 1) the timing of the updates up to the Actual RTT (ARTT), and 

2) the accuracy of the updated RTTs as a function of the timing. The proposed statistical model that generates RTT accuracy is used in 

the fast-time simulation for evaluating the impact of RTT accuracy on airport surface operations.  

1. RTT Data Analysis  

GA/BA flight data collected by MITRE was used for the RTT data analysis. Out of 1,656 GA flights in this data set, 301 flights 

submitted at least one RTT and had AMA entry times from Airport Surface Detection Equipment, Model X (ASDE-X). The AMA-

entry time represents the GA flight’s Actual RTT, that is, the time they arrived at the edge of the GA ramp area. In this analysis, two 

main variables were analyzed: 1) RTT accuracy, and 2) RTT update interval. The RTT accuracy is defined as the difference between 

the ARTT and pilot’s last RTT estimate. The RTT update interval represents the time difference between two RTT updates of the 

same flight, or between the last RTT update time and ARTT.  

 

Fig.  4 RTT accuracy changes over time 

Fig. 4 shows the RTT accuracy changes in the lookahead time window [-30 min, 0 min] as time approaches the ARTT. The plot 

represents the RTT estimate values submitted by the pilots within the lookahead time window. This plot shows that in general, the 

RTT errors tend to decrease to negative values as the time progresses, which implies that the RTT prediction becomes more 



conservative, as it approaches ARTT.  The majority of the GA flights (85%) submitted their RTTs once (dark red markers), 

approximately 10% GA flights submitted two RTT updates (red color), and about 5% provided more than two RTT updates. 

2. RTT Model Development 

For the RTT model development, a two-step approach was used, which was introduced in the EOBT modeling in [4]. First, the RTT 

update times of each flight were modeled within a [-30 min, 0 min] lookahead time window as the time approached ARTT. Then, the 

RTT accuracy was modelled at each update time calculated in the first step. The model produced RTT accuracy distribution similar to 

the actual RTT error distribution using the probability distributions provided by commercial software libraries like Apache Commons 

Math package [10] and MATLAB [11].  

 

Fig.  5 Number of RTT updates 

 

Fig.  6 RTT update time 

 

Fig.  7 RTT accuracy distribution

In the first step, the following two variables were considered: 1) the number of RTT updates per flight (referred to as PD1), and 2) the 

time distance from the reference time (i.e., ARTT) to the time when the RTT value is updated (referred to as PD2) within the [-30 min, 

0 min] lookahead time window. To model the number of times the RTTs are updated for a single flight, the log-normal probability 

distribution, which has two parameters (μ and σ), was selected since it best matched with the actual data among various distributions 

tested. The log-normal distribution is a continuous probability distribution; hence, the values were rounded to the closest integer for 

computing the number of RTT updates.  

For the RTT update time distance modeling, the Weibull distribution was selected.  In the RTT model, the time distance between two 

updates can be modelled as a ‘size’ in time, given the number of RTT updates obtained from the log-normal distribution. The Weibull 

distribution, which has only two parameters (A and B), showed the best fit to the RTT data samples among various continuous 

distributions available in the Apache Commons Math package and MATLAB. From the actual data analysis, probability distributions 

of these two values were fit, as shown in Figs. 5 and 6. The histogram bar graphs (green) and regression curves (red) represent the 

actual data and the modelled distributions, respectively. The RTT update times, Xk, for each flight can be modelled using the values 

randomly sampled from these two distributions and expressed in Eq. (1). 

Xk = -random(PD2),  k = 1,2,…, random(PD1) (1) 

In the second step, a linear regression model was developed, as expressed in Eq. (2), to fit the average accuracy trend along the 

lookahead time. In (2), x and y represent the lookahead time with respect to the ARTT time and the mean RTT error (ARTT-RTT) at 

x, respectively, with the regression coefficients, c0 and c1.  

y = c0 + c1   x     (2) 

Next, a sequence of probability distributions was fitted to the actual RTT error data (referred to as PD3). The logistic probability 

distribution model was the closest to the actual RTT error distribution provided by the actual data. Fig. 7 shows the histogram of 

actual RTT accuracy values, and the red line in the chart shows the selected Logistic probability distribution model. The Kullback-

Leiblar divergence (also called relative entropy) [12] was used to measure how much one probability distribution was different from 

the reference probability distribution. The Kullback-Leibler divergence of the selected model with respect to the actual distribution 

was 0.4064, the lowest, or the best, fit of all candidate models. 

The RTT accuracy, Y, can be modelled using Eq. (3):  

Y = c0 + c1  Xk + random(PD3)   () 

where Xk is the RTT update time from the previous model in Eq. (1). 

From the data analysis using the actual RTT data at CLT, the following parameters were calculated in TABLE I.  

Table I Parameters used in the RTT Model 

RTT Model Probability Distribution or Regression Model Parameters 

RTT update time 
PD1: Log-normal  = 0.114848,  = 0.303685 

PD2: Weibull A = 11.3599, B = 1.54735 

RTT accuracy 
PD3: Logistic  = -0,306186,  = 2.27737 

Linear Regression c0 = -2.538, c1 = -0.1908 



3. RTT Model Validation 

With the given parameters in Table I, the RTT values were generated from the proposed RTT model for model validation. The two 

scatter plots in Figs. 8 and 9 show the actual RTT error and the generated RTT errors using the model proposed in Eq. (3), 

respectively, along the lookahead time window [-30 min, 0 min] as the time approaches ARTT. The RTT values from the RTT 

accuracy model cannot be exactly the same as the actual RTTs for an individual GA flight, but it is shown that the distributions are 

visually quite similar and the Kullback-Leibler divergence is small (0.0389).  

 

Fig.  8 Actual RTT accuracy 

 

Fig.  9 Modeled RTT accuracy

III. Simulation Results 

This section presents the simulation results and analyses of the four simulation groups.  During Bank 2 at CLT, almost all GA flights 

use the east runway (18L/36R) which is closest to the GA ramp areas.  In the simulations, all GA flights were assigned to Runway 

18L.  The results shown in the analysis are for Runway 18L only. 

A. Simulation Group 1: GA flight request distribution  

In this simulation group, ten GA flights were added to the baseline scenario.  This number reflects the Bank 2 non-passenger flight 

statistical analysis.  Their flight ready times from the GA ramp were distributed in the bank in four ways:  

• Case 1: uniformly distributed over the whole bank, 

• Case 2: in the beginning 30 minutes of the bank, 

• Case 3: in the middle 30 minutes of the bank, and  

• Case 4: in the last 30 minutes of the bank 

Twenty Monte Carlo simulation runs were conducted for each case.  Figs 10 and 11 show the average total gate hold times and the 

average total taxi-out times, respectively, over the twenty simulation runs.  Error bars indicate 95% confidence level.  Since the GA 

flights provided no RTTs in this group, they were not subject to metering (and zero gate hold time).  In Case 2, where the GA traffic 

concentration was in the beginning of the bank, airline flights had longer gate hold and taxi-out times, rather than Case 3 as originally 

expected.  It reveals that the GA traffic was competing with the airline traffic for the runway at the beginning of the bank.  

Additionally, because the GA aircraft immediately started taxiing into the AMA, after being designated as “ready”, and joined a 

departure queue earlier, they became higher priority in the scheduler than the airline aircraft at the gate. This resulted in longer gate 

holds and taxi-out times for the airline flights.  Case 3, where the GA traffic concentration was in the middle of the bank, had the 

second largest impact to airline flights.  This is because although the airline departure traffic began to decrease, there was sufficient 

demand on this dual-use runway due to the inbound arrivals.  Case 4, where the GA traffic was in the end of the bank, had the least 

impact on the airline flights.  Also, in Case 4, the total GA taxi-out time increased compared to Cases 2 and 3.  The probable reason 

for the increase in taxi out time is that the arrival traffic on the dual-use runway at the end of the bank caused the GA aircraft to wait 

longer for the runway use.        

 

Fig.  10 Total gate hold time of group 1 

 

Fig.  11 Total taxi out time of group 1



Figs 12 and 13 plot the time series of the gate hold time and taxi-out time, respectively. The time series is made of a sequence of 

vertical bars in five-minute bins.  In the gate hold time series shown in Fig 12, the left bars represent the average total gate hold times 

of aircraft whose readiness time lies in those bins, and the right bars represent the average total gate hold aircraft count.  Airline and 

GA aircraft are separated and stacked.  In this simulation group, GA aircraft were at the parking stand and can leave freely and not 

subject to any holds and so only airline aircraft have hold times and visible bar heights as shown in Fig. 12. For taxi-out time shown in 

Fig 13, each bar shows the average total taxi out time of the aircraft who’s actual off-block time lies in that bin.  Airline and GA 

aircraft taxi-out times are stacked in the plot.      

 

Fig.  12 Gate hold time series of group 1 

 

Fig.  13 Taxi out time series of group 1

In the time series for Case 2, surface metering of the airline flights started early around 20 minutes into the bank, and so the GA flights 

dominated the early part of the bank as shown in the taxi out time series and ‘pushed’ the airline flights to metering hold.  Case 3 

shows the similar metering start time to Case 1, but higher metering time bars because of the GA traffic concentration in the middle of 

the bank.  Case 4 shows the least impact on airline aircraft metering which is consistent with the total numbers in Fig. 11.   

 

Fig.  14 Runway throughput chart of group 1 

 

Fig.  15 Cumulative runway throughput of group 1

Figs 14 and 15 show the runway throughput metric.  A departure runway operation is registered at takeoff and an arrival runway 

operation occurs at landing.  The stacked bar charts in Fig. 14 measure the average numbers of runway operations in five-minute bins.  

Fig. 15 plots depict the cumulative operations for departures only to focus on airline and GA departure throughputs.   In Case 2, the 

bar chart shows the GA aircraft took a significant portion of runway takeoff slots in the early part of the bank and pushed airline 

departure aircraft to later takeoffs, resulting in takeoff delay of airline aircraft.  This is also observed in the cumulative throughput 

plots in Fig. 15 where the airline departure (in the middle plot) of Case 2 exhibited lower throughput up to about 70 minutes into the 

simulation time compared to the other cases.  A similar situation can be seen in Case 3, in which the GA aircraft concentration in the 

middle of the bank caused lower airline flight throughput from 60 to 105 minutes. The highest runway throughput in five-minute bins 



happened in Cases 2 and 3, at 60 minutes into the simulation time.  It is about 5.5 flights combining departures and arrivals, which 

translate to an average of 55 seconds of separation time, indicating the runway was saturated then.   

The results in this simulation group show that GA traffic concentrated in the beginning 30 minutes of the bank had the largest impact 

on airline flights, in metering hold time, taxi out time, and throughput.  One reason is that airline departure demand starts early in the 

bank, which is then overlapped by GA traffic.  Another reason lies in the unpredictability of GA operation, which tends to cause 

longer gate holds from the surface scheduling algorithm and longer taxi-out times for airline aircraft. 

B. Simulation Group 2: Number of GA flights 

In this group, six different numbers of GA flights were added to the baseline scenario.  Their readiness time perturbation was evenly 

distributed over the entire traffic bank.  Table II shows the numbers of GA flights in each of the six cases.  Twenty simulation runs 

were conducted for each case.  Statistically, Case 6 of this group is the same as Case 1 of Simulation Group 1. 

Table II Number of GA flights 

Case No 1 2 3 4 5 6 

Number of GA Flights 0 2 4 6 8 10 

Figs 16 and 17 show the average total gate hold times and the average total taxi-out times, respectively, over the Monte Carlo 

simulation runs.  When GA traffic increased, the airline flights experienced longer metering hold times, as expected.  At the same 

time, the total taxi-out time of the airline flights also showed an increasing trend with Case 2 as an outlier, which probably was due to 

the demand timing of the two GA flights with respect to the airline flights in the baseline scenario.  The increase of GA traffic and its 

less predictability had a negative impact on the airline flights in both gate hold and taxi-out times, or on the metering effectiveness for 

taxi out time reduction.  The increased taxi time of GA flights shown in Fig. 17 was due to the increased number of GA flights.

 

Fig.  16 Total gate hold time of group 2 
 

Fig.  17 Total taxi out time of group 2

 

Fig.  18 Gate hold time series of group 2 

 

Fig.  19 Taxi out time series of group 2



The time series of gate hold and taxi out times are depicted in Figs 18 and 19. When the number of GA flights increased gradually, the 

metering started earlier.  Because the GA traffic was evenly spread across the bank, however, the system was able to handle the 

impact over the bank. 

The runway throughput comparisons among the six cases are shown in Figs 20 and 21.  The cumulative airline flight throughputs, in 

the middle graph in Fig. 21, show delayed throughputs as the number of GA flights increased.  This is consistent with the combination 

of the increased gate hold time and taxi out time seen earlier.  It implies takeoff delay of the airline flights, which can be seen in the 

time series of bar charts around 100 minutes as more airline flights were pushed to take off late.

 

Fig.  20 Runway throughput chart of group 2 

 

Fig.  21 Cumulative runway throughput of group 2

Overall in this simulation group, the simulation results show that the increase of GA traffic affected the airline flights with earlier 

metering start times, higher hold times, taxi out times and takeoff delays.  In particular, because of the less predictability of GA traffic 

demand, the effectiveness of surface metering to mitigate taxi out times was affected negatively.  

C. Simulation Group 3: Percentage of GA flights having RTTs 

The RTT model was introduced in Simulation Group 3 and provided the RTT values for GA flights prior to departing the parking 

stands in the GA hangar.  The RTT model was configured to match the accuracy of the actual data from MITRE.  Ten GA flights had 

their ready times perturbed uniformly over the entire bank in the baseline scenario.  The percentage of the GA flights that provided 

their RTTs were varied in six cases: 0%, 20%, 40%, 60%, 80% and 100%.  The 0% case represents the current operations without 

Mobile Applications, whereas the 100% case assumes that all the GA flights provide controllers with the estimated AMA entry times 

in advance.  The GA flights which provided RTTs were considered in the high priority group in runway scheduling and had to comply 

with the metering hold at parking stand.  Forty simulations were run for each case.  This doubled number of simulations runs helped 

expand the statistical sample size to achieve a good accuracy of each target percentage of GA flights that provided RTTs. 

 
Fig.  22 Total gate hold time of group 3 

 

Fig.  23 Total taxi out time of group 3

Figs 22 and 23 show the average total gate hold times and the average total taxi out times, respectively.  Fig. 22, shows that the total 

hold times of the GA flights increase as more GA flights provided RTTs, but the hold times of the airline flights show no statistically 

significant difference.  This implies that the impact on the gate hold time of airline flights by GA flights with or without RTTs is 



small.  GA flights that submit RTTs compete with airline flights for slots from the scheduler and hold at park stand.  In contrast, the 

GA flights that do not provide RTTs directly affect the airline flights by leaving the parking stand freely when ready.  Nonetheless, the 

overall gate hold times of both airline and GA flights increased when more GA flights had RTTs.  In correlation with the increase in 

metering hold times, the taxi out time chart in Fig 23 shows a decreasing trend in both airline and GA flights.  It indicates that when  a 

greater percentage of GA flights submitted RTTs and complied with the metering times, the interruption to the metering ecosystem 

dropped and benefitted the taxi out time reduction.   

 

Fig.  24 Gate hold time series of group 3 

 

Fig.  25 Taxi out time series of group 3

The time series bar charts of metering hold and taxi out times are displayed in Figs 24 and 25, respectively.  The metering hold time 

charts show that the percentage of GA flights submitting RTTs did not accelerate nor delay metering start times, because of the same 

reasons as described in the total number analysis, i.e., the gate hold time of airline flights by GA flights with or without RTTs is small. 

The metering hold time distributions of the airline flights are very similar to each other.  The increase of GA flights’ metering hold 

count and time is evident as more RTTs had been submitted.  At the same time, the taxi-out times of both airline and GA flights 

decreased across the bank, consistent with the results in the total numbers. 

 

Fig.  26 Runway throughput chart of group 3 

 

Fig.  27 Cumulative runway throughput of group 3

The runway throughputs are depicted in Figs 26 and 27.  No obvious differences are found between cases in either plot. That indicates 

that the RTT provision of GA flights can increase metering hold time but decrease taxi out times of both airline and GA aircraft, 

helping maintain departure throughput. 



In summary, the results show that overall taxi out times can be reduced when more GA flights provide RTTs and are in compliance 

with metering hold times.  In other words, GA flights submitting RTTs and complying to metering times can help improve the airport 

performance. 

D. Simulation Group 4: GA flight RTT accuracy 

In Simulation Group 4, four different RTT accuracy levels of GA flights were tested, as shown in Fig.  28.  Case 1 is the ideal case 

where the pilots’ estimated RTTs are exactly the same as the actual RTTs.  Case 3, the baseline case, is the current level of RTT 

accuracy from the data collected by MITRE.  Cases 2 and 4 have the accuracy levels better and worse than the baseline case, 

respectively, for comparison.  The horizontal axis is the lookahead time towards the actual RTT.  The vertical axis is the RTT 

accuracy measured as the difference of the actual RTT and the estimated RTT by pilots.  The data of the plots were collected from 

actual simulations.

 

Fig.  28 RTT accuracy cases 

In each case, ten GA flights were uniformly added across the baseline traffic scenario with the varied RTT accuracy level.  Forty 

simulations were conducted for each case as well. 

 

Fig.  29 Total gate hold time of group 4 

 

Fig.  30 Total taxi out time of group 4 

 
Fig.  31 Cumulative runway throughput 

of GA flights of group 4 

Figs 29 and 30 show the comparison among the four RTT accuracy levels for metering hold and taxi out times, respectively.  The 

metering hold times of GA flights went up steadily when RTT accuracy became worse.  However, the additional hold times did not 

translate to taxi out time reduction.  The reason likely lies in the fact that the added hold times were induced primarily by the 

inaccuracy of RTT prediction rather than scheduling.  In particular, the conservative prediction errors (i.e., estimated RTT is later than 

ARTT) resulted in unnecessary hold times and consequently takeoff delays as seen in the runway throughput plot, Fig.  31.   

For airline flights, no statistically significant differences are observed in the first three cases.  In Case 4, the taxi out times of both 

airline and GA flights had a small but noticeable amount of increase, compared to the averages of the other three cases, possibly due 

to the increased uncertainty from the RTT prediction errors. The time series of metering hold and taxi-out times, and the runway 

throughputs, not shown in the paper, had little difference among the four RTT accuracy levels. 

The simulation results in this group show that the RTT accuracy affected mainly the GA flights’ throughput.   The RTT accuracy at or 

better than the baseline from the actual data had no significant impact on the airline flights.  On the other hand, RTT error worse than 

the baseline level may have a negative impact on both airline and GA flights due to the increased prediction errors.

IV. Conclusions 

In this study, fast-time simulations were used to investigate the impact of GA flight operations on airport performance.  The ATD-2 

surface metering scheduling algorithm was used for Bank 2 traffic hours at CLT.  The objectives of the study are to investigate how 

the current GA operations may affect surface management efficiency benefits, such as taxi out time reduction from surface metering, 

and potential merits of including GA flights in the surface scheduling program.  The simulations were conducted in four simulation 

configuration groups.  The first two groups focused on the GA departure demand concentration and the number of GA flights in the 

bank.  They were designed to study the impact of current GA operation.  In the next two simulation groups, an RTT model was 

developed based on the actual operational data from MITRE.  The model sets percentages of GA flights providing RTT predictions 



and varies the RTT accuracies in the simulations.  These two simulation groups studied how airport performance under surface 

metering were affected by GA flights submitting RTTs to the scheduler system, through their mobile devices for example. 

The simulations in the first two groups show that: 

• The concentration of GA departure traffic at the beginning of the bank had the most significant impact on airline departures.  

It resulted in longer metering hold and taxi-out times for airline flights.  It also triggered the scheduler to start surface 

metering earlier. GA traffic concentration in the middle of the bank had the second largest impact on airline flights’ 

performance.  GA traffic concentration at the end of the bank and evenly spread out across the bank had the least impact on 

airline flights.  However, GA departure concentration at the end of the bank had the longest taxi-out times because of the 

arrival traffic demand for the same runway during the second half of the bank. 

• The increase of GA traffic affected the airline flights by initiating an earlier surface metering time, longer hold times, longer 

taxi-out times, and longer takeoff delays.  In particular, less predictability of GA flights appeared to affect the metering 

effectiveness in reducing taxi-out time for airline flights.   

The results from the next two simulation groups show that: 

• When more GA flights provided RTTs and followed metering hold advisory, the overall taxi-out times were steadily reduced 

by a relatively small amount (probably due to the small overall GA traffic level), and at the same time the runway 

throughputs and takeoff delays remained the same.  This finding indicates readiness information from GA flights via mobile 

devices, such as MITRE’s prototype Mobile App, is beneficial to airport performance with surface metering. 

• When the RTT accuracy is the same as or better than the baseline level, no statistically significant impact on airline flights 

was seen in all performance metrics. When RTT errors were larger than the baseline level, both airline and GA flights 

showed longer taxi-out times due to the increased uncertainty introduced by the prediction errors.  For GA flights, larger RTT 

prediction errors caused longer metering hold times that subsequently led to takeoff delay.   

Despite the relatively small percentage of GA traffic at CLT, the results showed the clear impact of the current GA-operation levels on 

airport performance in the surface metering environment. Obtaining readiness information from more GA flights may also impact 

surface operations.  Further research may consider other airports such as DAL where GA operations make up a greater percentage of 

the traffic demand. 

 

Acknowledgement 

This study is supported by the NASA ATD-2 project, funded by Airspace Operations and Safety Program (AOSP).  The authors are 

grateful to The MITRE Corporation for their collaboration and research support. 

References

[1] Federal Aviation Administration, “General Aviation and Part 135 Activity Surveys – CY 2017,” 

https://www.faa.gov/data_research/aviation_data_statistics/general_aviation/CY2017 

[2] Y. Jung, et al., “Airspace Technology Demonstration 2 (ATD-2) Phase 1 Concept of Use (ConUse),” NASA/TM-2018-219770, February 28, 

2018. 

[3] NASA ATD-2 team, “ATD-2 Benefits Mechanism,” Publications of the ATD-2 Subproject, 2020 

[4] H. Lee et al., “Fast-Time Simulation for Evaluating the Impact of Estimated Flight Ready Time Uncertainty on Surface Metering,” 38th Digital 

Avionics System Conference, San Diego, California, Sep 2019. 

[5] S. Badrinath et al., “Evaluating the impact of uncertainty on airport surface operations,” 2018 AIAA Aviation Forum, Atlanta, Georgia, Jun 

2018.  

[6] P. Diffenderfer et al., “Concepts for Delivering IFR Clearances & Exchanging Pre-Departure Data Using Mobile Devices,” 2018 Integrated 

Communications Navigation and Surveillance (ICNS) Conference, Apr 2018. 

[7] P. Diffenderfer et al., “Using Mobile Devices for IFR Clearance Delivery and Release and Data Exchange,” AIAA Aviation Forum Atlanta, 

Georgia, June 2018. 

[8] R. D. Windhorst et al., “Validation of simulations of airport surface traffic with the Surface Operations Simulator and Scheduler,” AIAA 

Aviation Technology, Integration and Operations Conference, Los Angeles, California, Aug 2013. 

[9] W. Coupe et al., “Scheduling Lessons Learned During Phase 1 Field Evaluation of the ATD-2 Integrated Arrival, Departure, Surface Concept,” 

13th USA/Europe Air Traffic Management Research and Development Seminar (ATM2019), Vienna, Austria, June 2019. 

[10] Apache Commons Math Library, https://commons.apache.org/proper/commons-math 

[11] MATLAB, https://mathworks.com/products/matlab.html 

[12] S. Kullback, “Information Theory and Statistics,” John Wiley & Son, 1959, reprinted in 1978: ISBN 0-8446-5624-9. 

https://www.faa.gov/data_research/aviation_data_statistics/general_aviation/CY2017

	I. Introduction
	A. Integrated Arrival, Departure, and Surface (IADS) Traffic Management System
	B. Mobile App Technology Enables Two-Way Communication with GA Operations
	C. Research Objective

	II. Simulation environment description
	A. Airport
	B. Simulation setup
	C. Simulation configurations
	1. Simulation Group 1: GA flight request distribution
	2. Simulation Group 2: Number of GA flights
	3. Simulation Group 3: RTT percentage
	4. Simulation Group 4: RTT accuracy

	D. Performance metrics
	E. RTT model
	1. RTT Data Analysis
	2. RTT Model Development
	3. RTT Model Validation


	III. Simulation Results
	A. Simulation Group 1: GA flight request distribution
	B. Simulation Group 2: Number of GA flights
	C. Simulation Group 3: Percentage of GA flights having RTTs
	D. Simulation Group 4: GA flight RTT accuracy

	IV. Conclusions

